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Nonequilibrium fluctuation-induced phase transport in Josephson junctions
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We show that nonequilibrium current fluctuations of various types can give rise to net voltages
in superconducting tunnel junctions. This is the result of a fluctuation-induced net rate of change
of the phase difference of the superconducting order parameter across the junction. Various exact
expressions are derived for the mean voltage and are evaluated explicitly in certain limits, as well

as by numerical simulations.

We show that these phenomena are due to an asymmetry in the

spectral properties of the current noise, which should be a fairly ubiquitous feature of nonequilibrium

fluctuations in nature.
PACS number(s): 05.40.+j, 74.40.+k, 74.50.+r

In the past year or so there has been a flurry of interest
in fluctuation-induced transport phenomena [1], focused
on the observation that nonequilibrium fluctuations can
lead to transport in the presence of a spatial asymmetry
[2]. It has also been pointed out that mean-zero noise of
a more complicated asymmetric type can lead to similar
phenomena even in the absence of a spatial asymmetry
[3]. Preliminary attempts have been made to apply these
phenomena to the operation of biomolecular motors [4],
as applications of new molecular separation techniques
[5], to condensed matter type systems [6,7], and to un-
derstanding the kinetics of single ion channels [8]. All of
this recent work has focused on the transport of parti-
cles along a given spatial axis. Here we show that these
types of phenomena can appear in more general contexts
by demonstrating that the “transport” of the phase dif-
ference of a quantum mechanical order parameter via an
analogous process leads to fluctuation-induced phenom-
ena in superconducting electronic devices.

Most of the previous work focused on completly sym-
metric nonequilibrium noise in the presence of a spatial
asymmetry. In the present case a complete symmetry of
the underlying system (antisymmetry of the pair current
across the junction as a function of the phase difference)
is imposed by time reversal invariance, and the effect is
due to a spectral asymmetry in the noise which we call
dynamical asymmetry to distinguish it from spatial asym-
metry.

A typical superconducting (Josephson) junction con-
sists of a junction shunted by a resistance R, and driven
by a current I(t) as pictured in Fig. 1. Such junctions
are of interest not only in terms of their technological ap-
plications, but because of their ability to exhibit (singly
and in arrays) a number of important types of nonlinear
phenomena, including phase locking, bifurcations, chaos,
solitonic excitations, and pattern formation [9]. Joseph-
son showed that electron pairs could tunnel through a
narrow insulating material between two superconductors
[10]. The pair current across the junction is given by
Jp = J.sin¢, where ¢ is the phase difference of the su-
perconducting order parameter across the junction and
J. is a critical current. The evolution of the phase dif-
ference of the current carrying state is described by the
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equation
A ¢+ Jesing = I(t), (1)
2eR

where I(t) is a driving current [11]. Here we will be
interested in totally unbiased driving (I(t)) = 0.

Of particular interest is the voltage V(t) across the
circuit. The phase difference is related to the voltage
according to

8(t) = 9(0) = 5 [ V(s) ds 2)

so that V(t) = (2e/h)¢. We will show that the right
conditions of the nonequilibrium fluctuations of 7(t) can
lead to a fluctuation-induced net rate of change of the
phase difference across the junction, and consequently
a fluctuation-induced net voltage (V(t)) = (2e/h)(¢)
where the () indicate time averages.

As a first example where the mechanism should be
readily grasped by the general reader we will consider
the rather elementary case of “slow noise.” We set
I(t) = &(t) + f(t), where £(t) is “fast” Gaussian white
noise (either thermal or externally applied) (£(t)) = O,
and (£(t)€(s)) = 2D8(t — s) and the driving f(t) is “slow
noise” with mean zero (f(t)) = 0. In pratice any net
fluctuating forces are usually included in the determinis-
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FIG. 1. Resistively shunted Josephson junction.
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tic parts of the equation. Additionally, any net current
can be canceled by an externally applied current so that
(f(t)) = 0. Equation (2) takes the form

¢+ wjsin(¢) = ((¢) +n(t), 3)

where ((t)¢(s)) = 2D§(t — s) with D = (4e2R?/h?)D,
n(t) = 2eRf(t)/h, and w; = 2eRJ./h. The evolution of
the probability density for ¢ is given by the associated
Fokker-Planck equation

Bupl#) = 05 [W(6,) + DB,] p(9) , @)

where ¥(¢,t) = —w; cos ¢ — n(t)¢. The steady-state so-
lution (for constant 1) is found by imposing periodic
boundary conditions ps(¢) = ps(¢ + 27), and normal-
ization f(]zd’ ps(x) dz = 1 [12]. This yields an exact ex-
pression for the mean rate of change of ¢

<¢> 27[1 — exp(—277n/D)] (5)

T 1 fdyfde e YW/t —2mmo—o)’

where ©(z) is the Heaviside step function. For n(¢) which
changes on time scales much slower than the principle
relaxation time of the system, the net voltage is found
by averaging

vy = 2 lim 1/OT (9(0)) a.

h =00 T

We have chosen this first example in the hopes that the
mechanisim for the production of this net voltage will
be clear to the average reader: namely, the voltage is
due to a net bias in the “hopping” of the phase differ-
ence through an angle of £27. Since the effect is typi-
cally exponential in the applied force f(t), a force with
mean zero can give rise to a net voltage if the force is
applied asymmetrically in time. Since (¢) is an anti-
symmetric nonlinear function of n(t) hs and the volt-
age can be expanded in a series in the odd moments of
n(t) (V) = 3o cant1 (n°" ). Therefore there will be
a net voltage whenever any odd moment (n?"*1) # 0.
This happens even though the net “force” is zero, and
therefore is a fluctuation-induced effect. For nonadia-
batic noise this statement has to be generalized to the
statement that there will be a current if there is a non-
vanishing odd order correlation function of the noise.

The net voltage in Eq. (5) can be evaluated by steepest
descents when D, 7 < 2w;. The result is

V() = (seZRJC) o~ Jeh/eRD g1 (nhf(t))

h2 2eRD

As we have mentioned, the averaged voltage can be ex-
panded in terms of the odd moments of f(t),

vy = (8e2RJc) o—Jch/eRD

h2
LS (T )T
7;) 2eRD 2n+ 1)t

This asymmetry can also be viewed in terms of the spec-
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tral properties of the noise. Any noise with a uniform dis-
tribution of phases, such as Gaussian noise, will be sym-
metric, and will not give rise to a net voltage. If the phase
distribution of the spectrum is asymmetric the noise will
give rise to a net voltage. For arbitrarily fast noise the
net voltage will be nonvanishing whenever any odd cumu-
lant is nonvanishing, (9™ (¢1),...,7™~ (t,)) # 0, where
Zyzl m; is odd. This phasic asymmetry, which we call
dynamaical asymmetry, gives rise to a number of interest-
ing fluctuation-induced effects, and is worthy of further
study.

Figure 2 shows that the current is a peaked function
of the noise strength. Thus, everything else being con-
stant, there is an optimal amplitude for the driving. Here
the main features introduced by the dynamical asymme-
try are the interplay of the lower potential barriers in
the positive direction relative to the negative direction
(for this particular driving) and for the corresponding
shorter and longer times, respectively, the force is felt.
These types of competitive effects appear ubiquitously
in systems where there is an interplay between thermal
activation and dynamics.

As our principle example we consider the only example
of nontrivial noise that (to our knowledge) can be treated
analytically, and can also exhibit temporal asymmetry.
This is a system which is driven by telegraph I, (¢) (di-
chotomous) noise

b+ wjsing = n(t) , (6)
where 7n(t) = (2eR/h)I(t). The telegraph noise has two
states,
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FIG. 2. Times series.
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_ /D (1+c¢ __|D(1=c¢ 7)
T\ ) T T \1l+4+¢€)’

The transition probabilities w, from the plus to the mi-
nus state and w_ from the minus to the plus state are

1+e€ 1—e¢
we = EE w2 1E ®)
This noise has mean zero (n(t)) = 0 and correlation func-
tion
D
¢(t) = (n(t)n(0)) = — exp (~t/7). (9)

There are a number of stochastic processes with precisely
this correlation function, but not all of them will give rise
to a net voltage in the junction. This noise is dynamically
asymmetric in the same sense as our first example. The
noise spends a different amount of time in each state on
the average, yet the the average force is still zero.

The system is described by the set of equations [13]

Orp+ = —0z[wjsing + nylpy —wypy +w_p—, (10)

Oip— = —0z[wjsing+n_]Jp_ —w_p_+wipy, (11)

where p = p4 + p—. The net voltage can easily be found

(15]

(V) = (4me/B)u(@)[w;j sin g — DIyW (¢)]ps(¢).  (12)

w(@) = [1+1wjcosd]™t, 0 =2¢/\/1—e

W(z) = [1 — (7/D)w? sin 2p(z) — 9\/7'/_Dw] sm(b]

Again imposing periodic boundary conditions and nor-
malizing we obtain

vy = (4%) l—exrz;(A/D)’ A f w; sm)y (13)

W)= - [ ay gt (1)
e~ YY)/ D ¥ (z)-A2O0(y—=z)
M A e ) 1e)

To order 4/7/D we have

B 2ew € \/7‘/—D
) ( h )vl—ezf(?(w,-/D)’ 19)

where Iy is a modified Bessel function. The current is
positive if € > 0 and negative if € < 0.

There are obviously an unlimited number of possi-
ble examples of dynamically asymmetric noise. The di-
chotomic noise used above is a special case of a multi-
state “Kubo-Anderson” process [14] (sometimes called
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FIG. 3. Mean voltage (V') vs noise strength D for 7 = 0.01
and € = 0.9. The solid line is the theoretical prediction and
the dots and error bars are the results from numerical simu-
lations.

the “kangaroo processes”). There are also types of
continuous noise which can have dynamical asymmetry.
Shot noise, which is also of great importance in quantum
electronics, is of this latter type. Mean zero shot noise,
which is temporally asymmetric, can be produced if the
frequency and amplitude distribution is slightly different
for positive and negative fundamental pulses.

While in the previous cases the energy was extracted in
the form of a net transport of particles, here the nonequi-
librium effects of the driving are translated into the more
generic form of a net voltage. In previous work only dy-
namically symmetric noise was examined, and the effect
vanished in any symmetric situation, as is the case with
Josephson junctions. Since many periodic structures in
condensed matter physics are also symmetric, we feel that
our observations here might have significant practical im-
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FIG. 4. Mean voltage (V') vs temporal asymmetry paran:-
eter € for 7 = 0.01 and D = 2.0. The solid line is the theo-
retical prediction and the dots and error bars are the results
from numerical simulations.
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plication. For example, dynamically asymmetry voltage
fluctuations should give rise to net currents in superi-
onic conductors. These systems typically have periodic
and symmetric internal fields, and the effect would be
precisely analogous to the situation discussed here.

Dynamical asymmetry and spatial asymmetry relate
to the problem of nonequilibrium transport in precisely
the same way. In both cases a net effect arises due to
an interplay between the strength of a fluctuation, the
time it acts, and underlying dynamics. In the case of a
spatial asymmetry a fluctuation to the right with a given
strength which lasts a given time will tend to take the
system over the right-hand barrier while the same fluc-
tuation with sign reversed does not lift the system over
the left-hand barrier. In the case of dynamical asymme-
try the probabilities of the fluctuations to the right and
left are different, so a net effect arises in the absence of
a spatial asymmetry. What both of them show is that
even a subtle asymmetry in the shape of the potential
or in the shape of the spectral properties of the noise
will give rise to an effect even when the net force due
to each vanishes. Previously all the emphasis has been
put on spatial asymmetry, but we believe that dynamical
asymmetry deserves to be put on equal footing with spa-
tial asymmetry as one of the principle elements which, in
combination with the nonequilibrium time correlations,
can give rise to a net effect.

At this point it appears that the basic principles be-
hind fluctuation-induced transport type phenomena in
overdamped Ohmic systems are well understood. The
lesson to be learned from all this is that any kind of bro-
ken symmetry will usually allow energy to be pumped out
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of a “bath” as long as the system as a whole is not in equi-
librium [16]. This occurs at the expense of the increased
entropy of the bath, and is the essence of the “surprising”
effects observed in [2-5]. From the standpoint of funda-
mental physics this observation is the main significance
of an understanding of fluctuation-induced transport.

From the standpoint of applications, these ideas may
be of significant practical value for manipulating molecule
sized objects which are subject to thermal fluctuations
because of their small size. The attractiveness of this
idea is based largely on the observation that thermal
fluctuations can, under the right nonequilibrium condi-
tions, be harnessed to perform useful work. Thus, ther-
mal fluctuations can be made to aid the manipulation,
rather than hinder it. Such methods have been proposed
as novel molecular separation techniques [5]. More re-
cently, we have shown that it should be theoretically pos-
sible to control the molecular motions of voltage sensitive
biomolecules by applying voltage fluctuations of a type
very similar to the ones discussed in this paper [8]. This
can be done to such a degree that the molecule can essen-
tially be placed in a desired kinetic substate by a process
we have called nonequilibrium kinetic focusing.
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